metal-organic papers

Received 4 May 2004

Online 15 May 2004

Accepted 10 May 2004

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Miao Du* and Xiao-Jun Zhao

College of Chemistry and Life Science, Tianjin Normal University, Tianjin 300074, People's Republic of China

Correspondence e-mail: dumiao@public.tpt.tj.cn

Key indicators

Single-crystal X-ray study T = 298 KMean $\sigma(C-C) = 0.008 \text{ Å}$ H-atom completeness 81% R factor = 0.048 wR factor = 0.142 Data-to-parameter ratio = 14.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

µ-Acetato-di-*µ*-hydroxo-bis{acetato[bis(2-pyridyl)amine]cobalt(III)} acetate tetrahydrate: a novel mixed-bridged dinuclear Co^{III} complex with bis(2-pyridyl)amine as terminal ligands

The complex cation of the title compound, $[Co_2(C_2H_3O_2)_3-(OH)_2(C_{10}H_9N_3)_2](C_2H_3O_2)\cdot 4H_2O$, has a $[Co_2(\mu-OH)_2(\mu-OAc)(OAc)_2(bpa)_2]^+$ dimeric core [bpa is bis(2-pyridyl)amine and OAc is acetate], in which two Co^{III} centers are linked by two OH⁻ and one OAc⁻ bridges with a Co···Co separation of 2.8276 (10) Å. Each Co^{III} ion has an approximate octahedral geometry, coordinated by two pyridyl N atoms of the terminal bpa ligand, and four O-atom donors derived from two OH⁻ bridges, one OAc⁻ bridge and a monodentate coordinated OAc⁻ anion. Intramolecular and intermolecular hydrogenbonding interactions stabilize this structure.

Comment

The bis(2-pyridyl)amine molecule (bpa) represents an important class of chelating ligand, and has attracted considerable interest for a long period (Du *et al.*, 2003, and references therein). The reaction of bis(2-pyridyl)amine with Co^{II} perchlorate in the presence of azide anions affords the mononuclear complex diazido[bis(2-pyridyl)amine- $\kappa^2 N, N'$]-cobalt(III) perchlorate (Du *et al.*, 2001). We report here the molecular structure of a novel triply bridged dinuclear Co^{III} complex, [Co₂(μ -OH)₂(μ -OAc)(OAc)₂(bpa)₂](OAc)-4H₂O, (I).

The crystal structure of (I) consists of a $[Co_2(\mu-OH)_2(\mu-OAc)(OAc)_2(bpa)_2]^+$ cation, one OAc⁻ ion and four uncoordinated water molecules. In the dinuclear complex cation (Fig. 1), two crystallographically independent Co^{III} ions are bridged by two OH⁻ ions and one OAc⁻ group (in *syn-syn* mode), with a Co···Co separation of 2.8276 (10) Å. Each Co^{III} center is coordinated by two pyridyl N atoms of the terminal bpa ligand (in *trans-trans* mode), and four O-atom donors derived from two OH⁻ bridges, one OAc⁻ bridge and a monodentate coordinated OAc⁻ ion, forming an approximate octahedral geometry. Selected bond lengths and angles are listed in Table 1. The two Co-O_{OH}-Co bridging angles are

 \odot 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

metal-organic papers

96.94 (12) and 96.58 (12)°. The Co $-O_{OH}$ distances are in the range 1.883 (3)–1.894 (3) Å, with a mean value of 1.891 (3) Å, agreeing well with the structural parameters of related compounds (Okamoto et al., 1991; Chen et al., 1995). Two terminal bidentate bis(2-pyridyl)amine molecules coordinate to the Co^{III} ions to form two six-membered chelate rings, each with a flattened boat conformation. The dihedral angles between the pyridyl rings within each bpa ligand are 27.1 (3) and 28.0 (3)°.

An analysis of the crystal packing shows the existence of intramolecular and intermolecular hydrogen bonds, which stabilize this structure. Each bridging O-H group forms an intramolecular hydrogen bond with the adjacent monodentate OAc⁻ ion (Fig. 1 and Table 2). Two N-H groups of the bpa ligands form a pair of N-H···O hydrogen bonds with the uncoordinated OAc- ion and one uncoordinated water molecule; the geometry is typical of normal hydrogen bonds (Desiraju & Steiner, 1999). Examination of this structure with PLATON (Spek, 2003) indicates that there are no solventaccessible voids in the crystal structure.

Experimental

A mixture of Co(OAc)₂·H₂O (39 mg, 0.2 mmol) and bis(2-pyridyl)amine (34 mg, 0.2 mmol) was dissolved in methanol/water (25 ml) with stirring and heating. The resultant red solution was filtered and left to stand at room temperature. Well defined block-shaped single crystals of the title complex were obtained by slow evaporation of the solvent over a period of two weeks (yield: 36 mg, 45%). IR (KBr pellet, cm⁻¹): 3423 (b), 1641 (s), 1590 s (s), 1535 (s), 1479 (vs), 1421 (s), 1338 (m), 1270 (w), 1237 (m), 1160 (m), 1025 (m), 772 (m). Analysis calculated for the title compound: C 41.91, H 5.02, N 10.47%; found: C 41.80, H 4.68, N 10.56%.

Crystal data

$\begin{split} & [\mathrm{Co}_2(\mathrm{C}_2\mathrm{H}_3\mathrm{O}_2)_3(\mathrm{OH})_2(\mathrm{C}_{10}\mathrm{H}_9\mathrm{N}_3)_2](-\\ & \mathrm{C}_2\mathrm{H}_3\mathrm{O}_2)\cdot 4\mathrm{H}_2\mathrm{O} \\ & M_r = 802.52 \\ & \mathrm{Triclinic}, \ P\overline{1} \\ & a = 11.285 \ (3) \ \mathring{\mathrm{A}} \\ & b = 11.862 \ (3) \ \mathring{\mathrm{A}} \\ & c = 16.449 \ (4) \ \mathring{\mathrm{A}} \\ & \alpha = 80.970 \ (4)^\circ \\ & \beta = 71.818 \ (4)^\circ \\ & \gamma = 62.518 \ (4)^\circ \\ & V = 1855.7 \ (8) \ \mathring{\mathrm{A}}^3 \end{split}$	Z = 2 $D_x = 1.436 \text{ Mg m}^{-3}$ Mo K\alpha radiation Cell parameters from 9 reflections $\theta = 1.6-22.4^{\circ}$ $\mu = 0.96 \text{ mm}^{-1}$ T = 298 (2) K Block, red $0.38 \times 0.30 \times 0.24 \text{ mm}$
Data collection Bruker SMART 1000 diffractometer ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1997) $T_{min} = 0.711, T_{max} = 0.802$ 7796 measured reflections	6534 independent refle 4413 reflections with I $R_{int} = 0.028$ $\theta_{max} = 25.0^{\circ}$ $h = -7 \rightarrow 13$ $k = -13 \rightarrow 14$ $l = -17 \rightarrow 19$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.048$ $wR(F^2) = 0.142$ S = 1.006534 reflections 451 parameters

957

ections $> 2\sigma(I)$

H-atom parameters constrained
$w = 1/[\sigma^2(F_o^2) + (0.0765P)^2]$
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} = 0.001$
$\Delta \rho_{\rm max} = 0.65 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.32 \text{ e } \text{\AA}^{-3}$

Figure 1

The molecular structure of the cation of (I), showing the intramolecular hydrogen-bonding interactions (indicated by dashed lines), with displacement ellipsoids drawn at the 30% probability level. The uncoordinated water molecules and uncoordinated OAc- ion have been omitted for clarity.

Table 1

Selected geometric parameters (Å, °).

Co1-O2	1.894 (3)	Co2-O1	1.883 (3)
Co1-O1	1.894 (3)	Co2-O2	1.894 (3)
Co1-O5	1.898 (3)	Co2-O7	1.907 (3)
Co1-O3	1.907 (3)	Co2-O4	1.913 (3)
Co1-N3	1.934 (3)	Co2-N6	1.925 (3)
Co1-N1	1.937 (3)	Co2-N4	1.926 (3)
Co1-Co2	2.8276 (10)		
O2-Co1-O1	82.21 (11)	O1-Co2-O7	91.51 (12)
O2-Co1-O5	91.74 (12)	O2-Co2-O7	96.08 (12)
O1-Co1-O5	96.43 (11)	O1-Co2-O4	89.55 (12)
O2-Co1-O3	88.09 (12)	O2-Co2-O4	88.18 (12)
O1-Co1-O3	88.78 (11)	O7-Co2-O4	175.71 (12)
O5-Co1-O3	174.72 (12)	O1-Co2-N6	176.31 (12)
O2-Co1-N3	93.70 (13)	O2-Co2-N6	93.92 (13)
O1-Co1-N3	174.61 (12)	O7-Co2-N6	89.77 (13)
O5-Co1-N3	87.18 (13)	O4-Co2-N6	89.43 (13)
O3-Co1-N3	87.56 (13)	O1-Co2-N4	92.29 (13)
O2-Co1-N1	174.86 (12)	O2-Co2-N4	173.92 (13)
O1-Co1-N1	92.68 (13)	O7-Co2-N4	87.16 (13)
O5-Co1-N1	89.44 (13)	O4-Co2-N4	88.65 (13)
O3-Co1-N1	91.19 (13)	N6-Co2-N4	91.23 (14)
N3-Co1-N1	91.35 (14)	O1-Co2-Co1	41.67 (8)
O2-Co1-Co2	41.71 (8)	O2-Co2-Co1	41.71 (8)
O1-Co1-Co2	41.38 (8)	O7-Co2-Co1	101.72 (8)
O5-Co1-Co2	102.07 (9)	O4-Co2-Co1	81.81 (8)
O3-Co1-Co2	81.27 (8)	N6-Co2-Co1	134.65 (10)
N3-Co1-Co2	133.92 (10)	N4-Co2-Co1	132.58 (10)
N1-Co1-Co2	133.15 (10)	Co2-O1-Co1	96.94 (12)
O1-Co2-O2	82.50 (11)	Co1-O2-Co2	96.58 (12)

Table 2

Hydrogen-bonding geometry (Å, °).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N2-H2B\cdots O9^{i}$	0.86	1.998	2.789 (5)	153
$N5-H5A\cdots O11$ $O1-H1\cdots O6$	0.86 0.84	2.036 1.940	2.814 (6) 2.657 (6)	150 142
O2−H2···O8	0.85	1.925	2.683 (6)	148

Symmetry code: (i) x, y, z - 1.

With the exception of the H atoms of the water molecules, which could not be located, all the H atoms were placed in geometrically calculated positions after checking their presence in a difference map, and included in the final refinement in the riding-model approximation: N-H = 0.86 Å, O-H = 0.84 Å, C-H = 0.93-0.96 Å, and $U_{iso}(H) = 1.2U_{eq}(C,N)$ for aromatic C and N atoms, and $1.5U_{eq}(O,C)$ for hydroxy O and acetate C atoms.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SMART*; data reduction: *SAINT* (Bruker, 1998); program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *XP* in *SHELXTL* (Bruker, 1998); software used to prepare material for publication: *SHELXL*97.

We gratefully acknowledge financial support from the Natural Science Foundation of Tianjin (No. 033609711)

and the Starting Funding of Tianjin Normal University (to MD).

References

- Bruker (1998). *SMART, SAINT* and *SHELXTL*. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chen, M. Q., Liu, J., Mao, Z. W., Hang, Q. W. & Tang, W. X. (1995). Acta Cryst. C51, 1080–1082.
- Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. Oxford University Press.
- Du, M., Guo, Y. M., Chen, S. T., Bu, X. H. & Ribas, J. (2003). Inorg. Chim. Acta, 346, 207–214.
- Du, M., Guo, Y. M., Leng, X. B. & Bu, X. H. (2001). Acta Cryst. E57, m97–m99. Okamoto, K., Hidaka, J., Ama, T. & Yasui, T. (1991). Acta Cryst. C47, 2099– 2101.
- Sheldrick, G. M. (1997). SADABS, SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.